Hiding in Plain Sight
AGN Echoes of Low-Redshift Lyman Alpha Blobs

Nancy A. Levenson
Space Telescope Science Institute
Hiding in Plain Sight
AGN Echoes of Low-Redshift Lyman Alpha Blobs

Nancy A. Levenson
Mischa Schirmer
Saengeeta Malhotra, Hai Fu, Rebecca L. Davies, William C. Keel, Paul Torrey, Vardha N. Bennert, Anna Pancoast, James E. H. Turner, Ruben Diaz, Karianne Holhjem, and Claudia Winge
take-home themes

- AGN duty cycle
- Lyman alpha blobs in the local Universe
discovery of [OIII] luminous, extended emission

- CFHT/Megaprime gri image
- $z = 0.326$
- 8×18 kpc cloud extent
- green colors, similar to “green peas” but larger
- $[\text{O III}]$ luminosity $= 5.6 \times 10^{43}$ erg/s
- extended narrow-line region
- AGN diagnostic line ratios in spectrum

Schirmer+ 2013
sample of 17 objects

- selected in SDSS for color and size
- spectroscopy to confirm AGN nature and luminous [O III] \((\gtrsim 10^{43} \text{ erg/s})\)
- galaxy-scale emission line regions 15–20 kpc
- \(z \sim 0.3\)
 - sensitive to \(z = 0.12\), but lowest \(z = 0.19\)
- typically radio quiet
- rare
 - 1 per 1000 deg\(^2\)
- not viewing AGN continuum directly
under-luminous in MIR compared with [O III]

still mid-infrared luminous
one example in the Chandra archive

- Compton thick
- strong Fe Kα line
- flat continuum (reprocessed)
new Chandra observations of 10 galaxies

- predicted X-ray flux based on IR-X-ray correlation
- considered possibility of Compton thick to set exposure times
- all galaxies detected, but faint 10–20 times weaker than predicted
- no significant spectroscopy possible typically flat hardness ratios

Ichikawa+ 2012
AGN power source, with unusual features

properties
- [O III]: extremely luminous
- IR: luminous, but lower than usual [O III] relations
- X-ray: faint

response timescale
- light-crossing time > 10^4 years
- thermal response $\sim 10^3$ years
- \sim intrinsic

AGN duty cycle

thermal + ionization echoes:
AGN faded by factors of 10^3–10^4
over last 10,000 to 100,000 years
high-z Lyman alpha blobs

- typical Lyα luminosity $10^{42} - 10^{44}$ erg/s
- 20–200 kpc scales
- $z \gtrsim 2$
- direct optical detection of rest-frame Lyα
- sites of massive galaxy formation
- ionization escapes host

What is the ionizing source?

- (buried) photoionization – AGN or starburst?
- shock – starburst superwind?
- collisional – collapse of dark matter haloes?
Lyman alpha in GALEX band

Effective Area [cm^2]

Wavelength [Å]

1300 1400 1500 1600 1700 1800

GALEX FUV

redshifted Lyα
Lyman alpha detected and strong

14/15 observed sources detected
Is it Lyman alpha?
Consider other sources of UV emission:
 stars? nebular continuum?

estimate 75% observed flux is Lyman alpha

typical luminosities > 10^{43} erg/s
 similar to Lyman alpha blobs
low-z Lyman alpha blob differences

extended ionization regions, but smaller
low-z Lyman alpha blob differences

lower density environments
isolated, or small groups
masses $\leq 10^{13} M_\odot$, not $10^{15} M_\odot$
low-z Lyman alpha blob differences

evolution

- regular “LABs” gone by $z=0.3$
- comoving density here much lower - 3.3 Gpc$^{-3}$
 - these aren’t the same objects
- suggest these evolve like AGN
Lyman alpha emission

- useful to study physical processes, not direct analogs
- Lyman alpha emission lags ionization multiple scatterings to escape timescales up to 10^6 years
- Lyman alpha emission can be spatially broader than UV continuum

Yang+ 2017
conclusions and next steps

• ionization and thermal echoes indicate AGN duty cycle

• need more measurements to be quantitative e.g., corresponding unobscured sources, which are missed by selection criteria

• caution: offset in MIR-X-ray relation does not imply obscuration

• Lyman alpha also lags AGN cycle

• physical processes of Lyman alpha blobs available for detailed study

• but not direct examples, given differences in environment, evolution, and ionizing source