15 June, 2017 Elusive AGN in the next era@George Mason University

Mm/submm energy diagnostics in the ALMA era

Takuma Izumi (NAOJ)

Astrochemistry as a tool for Astrophysics

- Feedback = Astrophysical processes
 ⇒ Astrochemistry
- Different physical/heating processes (AGN, starburst) will produce different signature on the ISM
- PDR, XDR, MDR...
 → Chemical feedback
- Application: mm/submm spectroscopy can be a powerful tool to identify a <u>dust-obscured</u> energy source

Circumnuclear Disk (CND)

Molecular Energy Diagnostics - to find elusive AGNs -

Submm HCN-diagram: ALMA Band 7 lines

[CI](1-0)/CO(1-0) diagnostic: new method under initial investigation

→ I will show new ALMA data obtained recently

1. Submm-HCN Diagram:

Toward the submm-version of the BPT-diagram?

Non-LTE radiative transfer modeling of emission lines

High Gas Temperature Chemistry

- <u>Neutral-neutral reactions</u> are enhanced at **T > 300K**
- Efficient formation of HCN (e.g., $CN + H_2 \rightarrow HCN + H$)
- Efficient destruction of HCO⁺ (e.g., HCO⁺ + H₂O \rightarrow H₃O⁺ + CO)

Origin of the high temperature?

Time dependence of HCN abundance?

 We might select AGNs recently caused "mechanical feedback" by jet/outflow.

→ We can explain the time-dependent chemistry as well, since shocks reset the chemistry

Brief Summary 1

- AGN vs SB diagnostics by using enhanced HCN intensity (w.r.t HCO⁺ and CS) in AGNs (@ALMA Band 7)
- Abundance variation of HCN is responsible for the enhancement
- High-temperature neutral-neutral reactions can be natural explanation

 maybe, this method is sensitive to AGNs recently caused mechanical
 feedback (jet/outflow)

2. A new method in the ALMA era - C⁰/CO ratio -

Idea: X-ray dissociation: $CO \rightarrow C^0$

- We can easily expect much more efficient CO dissociation in XDRs than in PDRs. → Efficient formation of C⁰
- Underlying physics/chemistry is rather simple!

Why submm people like [CI] line(s)?

- Easy to solve line excitation
 → There are only two transitions
- Good tracer of **molecular mass**!!
- We can observe them in high-z objects (z ~ 5)

Current status of [CI] observation

 There is only ONE spatially resolved extragalactic [CI](1-0) measurement

→ NGC 253 (Krips et al. 2016)

- This indicates that [CI] line is really a new tool for extragalactic (but rather nearby) studies.
- [CI](1-0)/CO(1-0) ratio ~ 0.4 at the center (T_B unit)

Our ALMA Cycle 4 Study: Circinus galaxy (AGN)

- The nearest (4.2 Mpc) type-2 Seyfert
 → high spatial resolution (~20 pc/arcsec)
- L_{2-10keV} = 4 × 10⁴² erg/s (Marinucci et al.
 2012) → Strong XDR may extend to
 ~20-30 pc (Schleigher et al. 2010)
- Our objective: compare [CI](1-0)/CO(1-0) ratio with NGC 253 (Starburst)

Line	Band	θ (pc x pc)	1σ (mJy/beam)	dV (km/s)	t _{on-source} (hr)
[CI](1-0)	8	13 x 12	7.5	2.8	1.2
CO(3-2)	7	5.7 x 4.5	1.8	3.4	3.9

 \rightarrow I need to convert CO(3-2) flux to CO(1-0) flux

Spatial Distribution

- Now you can see that [CI](1-0) is clearly concentrated toward the AGN position! → indicate the CO dissociation
- Then, measure [CI](1-0)/CO(1-0) ratio next → compare with NGC 253
 (3-2)/(1-0) flux ratio ~ 25 @NGC 1068 (Viti et al. 2014) is assumed

[CI](1-0)/CO(1-0) diagnostic

- The ratio is x5 higher in Circinus (AGN) than in NGC 253 (Starburst).
 → support our claim that the ratio is enhanced in AGNs!
- We plan to expand the sample number to confirm this trend.

Brief Summary 2

- [CI](1-0)/CO(1-0) (or other transitions?) can be a new identifier of AGNs → Efficient CO dissociation to C⁰ in XDRs
- We indeed found x5 enhanced ratio in Circinus (AGN) than in NGC 253 (SB): these are only two galaxies with spatially resolved [CI](1-0) measurements at this moment...
- We plan to expand the sample from next ALMA (cycle 6~?)

Summary

- AGN vs SB diagnostics by using enhanced HCN intensity (w.r.t HCO⁺ and CS) in AGNs (@ALMA Band 7)
- Abundance variation of HCN is responsible for the enhancement
- High-temperature neutral-neutral reactions can be natural explanation

 maybe, this method is sensitive to AGNs recently caused mechanical
 feedback (jet/outflow)
- [CI](1-0)/CO(1-0) (or other transitions?) can be a new identifier of AGNs → Efficient CO dissociation to C⁰
- We indeed found x5 enhanced ratio in Circinus (AGN) than in NGC 253 (SB): these are only two galaxies with spatially resolved [CI](1-0) measurements...
- We plan to expand the sample from next ALMA (cycle 6~?)

Backup

PDR and XDR

- Basically a simple layered structure driven by UV photons
- But in actual, interstellar turbulence mixes layers (e.g., Offner et al. 2014)

PDR and XDR

High H_X/n

Low H_X/n

Maloney et al. (1996)

- Extends over a large volume
 → No layered structure
- Driven by X-ray photons (and yielded e.g., electrons)
- Much more efficient heating than in PDRs

Submm HCN-diagram: Case study in NGC 1097

- HCN(4-3)/HCO⁺(4-3) > 1
- HCN(4-3)/CS(7-6) > 10
- Similarly high ratios in another AGN (NGC 1068)
- These high ratios are <u>not seen</u> in Starburst galaxies
 → Watching the Feedback from AGNs? Key feature to identify AGN

http://www.alma-allegro.nl/expertiseareas/science-modelling-tools/45

Non-LTE modeling of line radiative transfer

- We use a *RADEX* code
 - van der Tak et al. 2007, A&A, 468, 627
 http://home.strw.leidenuniv.nl/~moldata/radex.html
- Statistical equilibrium:
 - Collisional process
 - Radiative process
 - Background radiation
- Optical depth is treated with an escape probability method
- Input parameters:
 n_{H2}, T_{kin}, T_{bg}, dV, N_{mol}
- We assume a spherical, uniform, single cloud for the modeling