Elusive dual AGN revealed by WISE

Sara L. Ellison: University of Victoria

Shobita Satyapal (GMU), Nathan Secrest (NRL), Laura Blecha (UMD), Trevor Mendel (MPE), Luc Simard (NRC), Dave Patton (Trent), Ryan Hickox (Dartmouth), David Rosario (Durham), Hossen Teimoorinia (Uvic).

(c) Interaction/"Merger"

- now within one halo, galaxies interact & lose angular momentum
- SFR starts to increase
- stellar winds dominate feedback
- rarely excite QSOs (only special orbits)
- (b) "Small Group"

- halo accretes similar-mass companion(s)
- can occur over a wide mass range
- M_{halo} still similar to before: dynamical friction merges the subhalos efficiently
- (a) Isolated Disk

- halo & disk grow, most stars formed
- secular growth builds bars & pseudobulges
- "Seyfert" fueling (AGN with M_B>-23)
- cannot redden to the red sequence

(d) Coalescence/(U)LIRG

- galaxies coalesce: violent relaxation in core - gas inflows to center:
- starburst & buried (X-ray) AGN
- starburst dominates luminosity/feedback, but, total stellar mass formed is small

(e) "Blowout"

- BH grows rapidly: briefly dominates luminosity/feedback
 remaining dust/gas expelled
- get reddened (but not Type II) QSO: recent/ongoing SF in host high Eddington ratios merger signatures still visible

(f) Quasar

- dust removed: now a "traditional" QSO
 host morphology difficult to observe: tidal features fade rapidly
- characteristically blue/young spheroid

(g) Decay/K+A

NGC 7252

 QSO luminosity fades rapidly

 tidal features visible only with very deep observations
 remnant reddens rapidly (E+A/K+A)
 "hot halo" from feedback

- sets up quasi-static cooling

(h) "Dead" Elliptical

 large BH/spheroid - efficient feedback
 halo grows to "large group" scales: mergers become inefficient
 growth by "dry" mergers

Hopkins et al. (2008)

Recent challenges to the picture that mergers can trigger AGN, even at the highest luminosities.

THE BULK OF THE BLACK HOLE GROWTH SINCE $z\sim 1$ OCCURS IN A SECULAR UNIVERSE: NO MAJOR MERGER–AGN CONNECTION*

Cisternas et al. (2011)

MAURICIO CISTERNAS^{1,20}, KNUD JAHNKE¹, KATHERINE J. INSKIP¹, JEYHAN KARTALTEPE², ANTON M. KOEKEMOER³, THORSTEN LISKER⁴, ADAY R. ROBAINA^{1,5}, MARCO SCODEGGIO⁶, KARTIK SHETH^{7,8}, JONATHAN R. TRUMP⁹, RENÉ ANDRAE¹, TAKAMITSU MIYAJI^{10,11}, ELISABETA LUSSO¹², MARCELLA BRUSA¹³, PETER CAPAK⁷, NICO CAPPELLUTI¹³, FRANCESCA CIVANO¹⁴, OLIVIER ILBERT¹⁵, CHRIS D. IMPEY⁹, ALEXIE LEAUTHAUD¹⁶, SIMON J. LILLY¹⁷, MARA SALVATO¹⁸, NICK Z. SCOVILLE⁷, AND YOSHI TANIGUCHI¹⁹

Schawinski et al. (2012)

Heavily obscured quasar host galaxies at $z \sim 2$ are discs, not major mergers^{*}

Kevin Schawinski,^{1,2}†‡ Brooke D. Simmons,^{2,3} C. Megan Urry,^{1,2,3} Ezequiel Treister⁴ and Eilat Glikman^{2,3}§

Morphologies of $z \sim 0.7$ AGN host galaxies in CANDELS: no trend of merger incidence with AGN luminosity

C. Villforth,^{1,2}* F. Hamann,¹ D. J. Rosario,³ P. Santini,⁴ E. J. McGrath,⁵

A. van der Wel,⁶ Y. Y. Chang,⁶ Y. Guo,⁷ T. Dahlen,⁸ E. F. Bell,⁹ C. J. Conselice,¹⁰

D. Croton,¹¹ A. Dekel,¹² S. M. Faber,⁷ N. Grogin,⁸ T. Hamilton,¹³ P. F. Hopkins,^{14,15}

S. Juneau,¹⁶ J. Kartaltepe,¹⁷ D. Kocevski,¹⁸ A. Koekemoer,⁸ D. C. Koo,⁷ J. Lotz,⁸

D. McIntosh,¹⁹ M. Mozena,⁷ R. Somerville²⁰ and V. Wild²

Villforth et al. (2014)

Villforth et al. (2017)

Host galaxies of luminous z~0.6 quasars: Major mergers are not prevalent at the highest AGN luminosities *

C. Villforth^{1,2}, T. Hamilton³, M. M. Pawlik², T. Hewlett², K. Rowlands², H. Herbst⁴, F. Shankar⁵, A. Fontana⁶, F. Hamann^{4,8}, A. Koekemoer⁷, J. Pforr^{9,10}, J. Trump^{11,12}, S. Wuyts¹

Observational tests of merger induced transformations: Galaxy pairs in the SDSS

DR7 pairs sample: Projected separation <80 kpc ΔV <300 km/s Mass ratio 0.1 - 10

Yields: ~14,000 galaxies in pairs.

Construct control samples that are matched in mass, redshift and environment: typically 100s control galaxies per pair.

Post-merger sample

587736947747053602	587732494342415393	536946900971839657	507725551741370430	587738409785557168
J101833.64+361326.6	J084344.98+354942	J094711.78+004209.6	J083551.6+612111.3	J083347.41+104842.3
		.71		
587736543096799321	587734948595236905	587732484897964080	587735666377949228	587741603112157297
J150517.88+080912.7	J104103.74+110546.2	J123040.3+510614.3	J13444216+555313.5	J132505 73+273243.3
587725550135214103	587735667454247018	587726032776265850	587736586047914003	538017720630020337
J110213.01+645924.8	J142459.77+543106.2	J103831.87+022144	J155517.83+290621.2	J110654.44+404755
567726031175221368	587735349633351726	587739720296626334	587722983883407448	587732470387703859
J120359.57+012439	.J095312.32+130603.4	J135831 05+272326.8	J112154.61+003344.8	J083818 43+333441.3
587732580077410186	588017605220171808	537739707051809602	588010880378404042	587741533323526200
J100049.35+534655.6	J120813.49+452001.3	J151151.35+230903.7	J131957.89+054828.3	J113507.51+295327.7

97 visually selected post-mergers from Galaxy Zoo.

Control matching and analysis done exactly same as for pairs.

AGN frequency: from optical emission lines

Although AGN *may* be triggered by first pass, fraction increases most strongly after coalescence

See also Ellison et al. (2011), Khabiboulline et al. (2014)

AGN frequency: from mid-IR colours

Significant fraction of merger triggered AGN are dust obscured and not seen as AGN in optical. Satyapal et al. (2014)

Increase in AGN luminosity at smaller separations.

Measured in the mid-IR with WISE: Satyapal et al. (2014)

Measured in the optical with [OIII]: Ellison et al. (2013)

AGN excess depends on selection technique

Low excitation radio galaxies – not triggered by mergers Ellison, Patton & Hickox 2015 More evidence that not all AGN exhibit same galaxy host properties: star formation rates.

Radio-selected AGN (LERGs) are strongly UNDER star forming

Optically-selected AGN are slightly UNDER star forming

mid-IR-selected AGN are OVER star forming

Ellison et al. (2016)

Mergers preferentially related to obscured AGN: simulations

Blecha et al. (in prep)

Growing supermassive black holes in the late stages of galaxy mergers are heavily obscured

C. Ricci^{1,2,3*}, F. E. Bauer^{1,2,4,5}, E. Treister^{1,2}, K. Schawinski⁶, G. C. Privon^{1,2}, L. Blecha⁷, P. Arevalo⁸, L. Armus⁹, F. Harrison¹⁰, L. C. Ho^{3,11}, K. Iwasawa^{12,13}, D. B. Sanders¹⁴, D. Stern¹⁵

ARE COMPTON-THICK AGN THE MISSING LINK BETWEEN MERGERS AND BLACK HOLE GROWTH?

DALE D. KOCEVSKI¹, MURRAY BRIGHTMAN², KIRPAL NANDRA³, ANTON M. KOEKEMOER⁴, MARA SALVATO³, JAMES AIRD⁵, ERIC F. BELL⁶, LI-TING HSU³, JEYHAN S. KARTALTEPE⁷, DAVID C. KOO⁸, JENNIFER M. LOTZ⁴, DANIEL H. MCINTOSH⁹, MARK MOZENA⁸, DAVID ROSARIO³, JONATHAN R. TRUMP¹⁰ Department of Physics and Astronomy, Colby College, Waterville, ME 04961 Draft version September 15, 2015

A NEW POPULATION OF COMPTON-THICK AGN IDENTIFIED USING THE SPECTRAL CURVATURE ABOVE 10 KEV

MICHAEL J. KOSS^{1,2,18}, R. ASSEF³, M. BALOKOVIĆ⁴, D. STERN⁵, P. GANDHI⁶, I. LAMPERTI¹, D. M. ALEXANDER⁷, D. R. BALLANTYNE⁸, F.E. BAUER^{9,10}, S. BERNEY¹, W. N. BRANDT^{11,12,13}, A. COMASTRI¹⁴, N. GEHRELS¹⁵, F. A. HARRISON⁴, G. LANSBURY⁷, C. MARKWARDT¹⁵, C. RICCI⁹, E. RIVERS⁴, K. SCHAWINSKI¹, E. TREISTER¹⁶, C. MEGAN URRY¹⁷

Draft version April 28, 2016

The final stages of the merger sequence: the hunt for dual AGN

Small number of dual (r<10 kpc) AGN known. Most discovered serendipitously in X-rays or radio. Targeted searches (e.g. dual peak emission lines) largely unsuccessful.

The search for binary AGN: a pilot study with Chandra

6 mergers from SDSS selected to have red WISE colour: W1-W2>0.5. All are classified as SF or composite on BPT diagram.

The search for binary AGN: a pilot study with Chandra Satyapal, Secrest, Ricci, Ellison et al. (2017, submitted)

4/6 mergers (r_p <10 kpc) with WISE AGN colours identified as dual AGN candidates with Chandra, increase number of close dual AGN confirmed in X-rays by 50%.

WISE mid-IR selected duals tend to be highly absorbed

Satyapal, Secrest, Ricci, Ellison et al. (2017, submitted)

Finding dual AGN with IFU spectroscopy.

Combining MaNGA (SDSS-IV) with WISE

First public release of MaNGA data in July 2016, as part of SDSS IV DR13 ~ 1400 galaxies.

Combining MaNGA (SDSS-IV) with WISE

Ellison et al. (2017)

Dual AGN with 8 kpc separation confirmed with 30 ks of Chandra DDT time.

X1: Log $L_X = 4x10^{43}$ erg/s X2: Log $L_X = 4x10^{41}$ erg/s

X1 fit: Gamma = 1.6,Log N_{H} = 2x10²² cm⁻²

Ellison et al. (2017)

Summary

- Mergers can trigger AGN, and enhance their accretion rate. Ellison et al. (2011, 2013).
- IR selected AGN more prevalent in mergers than optically selected AGN – mergers more frequently to lead to obscured AGN. Satyapal et al. (2014)
- Mergers are *not* responsible for most low excitation (low luminosity) RL-AGN Ellison, Patton & Hickox (2015).
- AGN host galaxies have different star formation rates depending on their selection technique. Ellison et al. (2016)
- IR selection very effective for finding dual AGN (which are often highly obscured). We have increased the number of X-ray confirmed dual AGN by over 50%: Satyapal et al. (2017), Ellison et al. (2017).