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Outline

* Simulation overview
 Alternative black hole seeding models

— Where & when black holes are seeded

— Implications for BH populations




Simulations




* Gas Cooling

* Star Formation and Stellar Feedback/Wind
(Springel & Hernquist 2003)
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Black Hole Model
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(with imposed Eddington limit)
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* BH mergers
 BH feedback

— 3-component feedback:
* Quasar Mode: Efficient feedback, thermal feedback
* Radio Mode: Inefficient feedback, energy inserted as

radio bubbles

* Radiative feedback: Modified photo-ionization and
photo-heating rates near black hole

» FoF-based seeding: 5x10° h" M_BH seeded into
5x10" h! MO halo
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Black Hole Populations
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Black Hole Populations
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Sample accretion histories
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Sample accretion histories
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Seeding mechanisms

* Direct collapse seed formation
* Poplll seed formation

e Nuclear star cluster seed formation

log(Z/Z o)

BH mergers
in nuclear clusters
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gas collapse
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Seeding mechanisms

* Post-processing analysis

e Re-calculate accretion rates for black holes



Seeding mechanisms

* Post-processing analysis

e Re-calculate accretion rates for black holes
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Seeding mechanisms

Post-processing analysis
Re-calculate accretion rates for black holes

Vary criteria for seeding

—M__,z__,Host properties, etc.

seed’ “seed’

Assume minimal change in feedback

— Saves having to re-run entire simulation!



Sample growth
histories

[llustris most massive progenitor
Re-calculated history
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Sample growth
histories

Original lllustris history Changed seed masses



Seeding mechanisms

 Random seeding with fixed probability (f__))




Black Hole Mass Density
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Seeding mechanisms

 Random seeding with fixed probability (f__))

 Seeding according to ?\gas
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Seeding mechanisms

 Random seeding with fixed probability (f__))

 Seeding according to ?\gas

— According to A__ and Z




Seeding mechanisms

 Random seeding with fixed probability (f__))
» Seeding according to A__,

* Seeding according to progenitor galaxy trees



Seeding mechanisms

 Random seeding with fixed probability (f__))
» Seeding according to A__,

* Seeding according to progenitor

s Next Subhalo in FoF
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Seeding mechanisms

 Random seeding with fixed probability (f__))

» Seeding according to A__,

* Seeding according to progenitor galaxy trees
-M_, > 3x10° M,

s b Z,

(Lodato & Natarajan
2006, Natarajan 201 1)

m, = Disk mass fraction of halo (~0.5)

j, = Disk angular moment fraction of halo (~0.5)
Q_= Toomre Q parameter (~2)



Seeding mechanisms

 Random seeding with fixed probability (f__))
» Seeding according to A__,

* Seeding according to progenitor galaxy trees

-~ M > 3x10° M
gal O

D
)

B -8R

s b Z,

0.8 020=0=0=0=0=0"

’-

)
o)

c
(7]
o
<
=

(Vs)

m, = Disk mass fraction of halo (~0.5)

j, = Disk angular moment fraction of halo (~0.5)
Q_= Toomre Q parameter (~2)

Color-coded by N/A__



Seeding mechanisms

 Random seeding with fixed probability (f__))
» Seeding according to A__,

* Seeding according to progenitor galaxy trees
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* Fraction of Illustris black
holes that should be seeded,
using new seeding
prescriptions
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* Fraction of Illustris black
holes that should be seeded,
using new seeding
prescriptions

* Spin-based roughly constant,
with total seeded number
growing with time

N

N

log(BH Count)



* Fraction of Illustris black

Ag.50 | holes that should be seeded,
\ using new seeding

10 S
Full Seed Model prescriptions

* Spin-based roughly constant,
with total seeded number
growing with time

N

log(BH Count)

* Progenitor galaxy based
seeding grows with time
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* Fraction of Illustris black

Ag.50 | holes that should be seeded,
\ using new seeding

10 S
Full Seed Model prescriptions

* Spin-based roughly constant,
with total seeded number
growing with time

N

log(BH Count)

* Progenitor galaxy based
seeding grows with time
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— Due to halo mass
threshold in Illustris, not
when progenitor galaxy
satisfies criteria
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Progenitor galaxies tend to [ ey
form seeds early

xies(z)

* Small fraction of galaxies
satisfy conditions
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Seeding Numbers

* Galaxy number grows with
time

— Original Illustris seeding
rate grows (yellow)
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* Progenitor-based seeding
decreases with time (dotted)

* Total seeded number




Typical Hosts

* Full seeding model:

—z>5:;
Roughly constant galaxy
masses
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Quasar Luminosity Function

* Bright-end largely unaffected by seeding

criteria

 Faint end shows normalization shift with

changing f__
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log(Lgn [erg/s])




Quasar Luminosity Function

* Bright-end largely unaffected by seeding

criteria

 Faint end shows normalization shift with

changing f__
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Quasar Luminosity Function

* Some bright-end dependence at high-z

* Very difficult to constrain
observationally
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Quasar Luminosity Function

* Some bright-end dependence at high-z

* Very difficult to constrain
observationally
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Black Hole Mass Function

log(Mgn/Mo) log(Mgy/Mo)




Black Hole Mass Function

log(Mgn/Mo) log(Mgy/Mo)




Luminosity vs Mass Functions

* Unlike Luminosity Function, high-end of Mass Function does depend on f__

d

e Lowerf  — lower M_, but comparable L
see BH BH

d

— Implies higher f___



Eddington Fractions

=0 =2 =0 -2 =1
Eddington Fraction Eddington Fraction

« Lowerf__, — lower M_, but comparable L, — higher f___

d

 Higher t__, — reaches selt-regulated regime earlier

d



‘Pre-seeding’ growth

* Standard seed model: Most seeds at low-z



‘Pre-seeding’ growth

* Standard seed model: Most seeds at low-z

* Galaxy progenitor model: Most seeding occurs at high-z



‘Pre-seeding’ growth

* Typical time between conditions for
Direct Collapse and seeding within
lllustris

200 400 600
Atseed (Myr) [tseed,lllustris_tseed,new]




‘Pre-seeding’ growth

* Assume accretion at fixed Eddington
fraction

« Wide range of possible M__, and/or



‘Pre-seeding’ growth

* Assume accretion at fixed Eddington
fraction

« Wide range of possible M__, and/or
T f
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Black Hole Merger Rates
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* Merger distribution peaks at
~2-3x10° M_ with ~10° M_

» Peak independent of f___



Black Hole Merger Rates

M,=10%-107

fedd= I
f =05

f,,=0- « Decreased f , — significantly fewer

BH mergers

* Normalized distribution broadly
Insensitive to f__
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— Challenging to constrain
M,=10%10° observationally
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Conclusions

Early-time evolution affected by seed model

— High-z and low-M_ .

Main BH populations largely unchanged by altered seeding model

— Still match QLEF Scaling relations, etc.
Decreased seed probability — later onset of self-regulation
Significantly decreased merger frequency

Still to do:
— Additional requirements for seeding (e.g. Lyman-Werner radiation)
— Seed mechanism -> initial growth behavior
— Seed formation from nuclear star clusters/Poplll stars

— Direct simulations including each seed mechanism
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Quasar Luminosity Function

* Some bright-end dependence at high-z

* Very difficult to constrain
observationally
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