Uncovering the Elusive Signatures of Obscured AGN in Mergers

Laura Blecha

JSI Postdoc, University of Maryland In collaboration with Shobita Satyapal (GMU), Sara Ellison (UVic), Greg Snyder (STScI), Nathan Secrest (US Naval Labs) Mike Koss (ETH Zurich), & Claudio Ricci (Univ. Catolica de Chile)

> Elusive AGN Conference, George Mason Univ. June 11-15, 2017

The elusive merger/AGN connection

 A small minority of SDSS AGN are hosted in apparent mergers (~4% with companion within 100kpc, Liu et al. 2011)

- Most optically & (soft) X-ray selected AGN hosts show no signs of merger activity (e.g., Cisternas et al. 2011, Kocevski et al. 2012, Villforth et al. 2014)
- No evidence for a connection between mergers & AGN fueling?
- Selection effects (e.g., merger stage, AGN luminosity, & nuclear obscuration)

(Liu et al. 2011)

Mergers trigger AGN fueling

- AGN activity is enhanced in galaxy pairs
- Strongest enhancement in late-stage mergers

Mergers trigger luminous AGN

High merger fraction for hosts of the most luminous AGN:

Fan et al. 2016

Mergers trigger obscured, luminous AGN

Fan et al. 2016

Kocevski et al. 2015

Mid-IR color selection of obscured, luminous AGN

Donley et al. 2012

- Mid-IR SED sensitive to hot, AGN-heated dust
- But sensitive only to most luminous AGN (& contaminated by star-forming galaxies at high z)
- Large surveys possible (with e.g., WISE)

Mid-IR color selection of obscured, luminous AGN

Jarrett et al 2011

Mid-IR color selection of obscured AGN

Satyapal et al. 2014

SDSS pair sample

+

Galaxy Zoo 'post-merger' sample

X-ray vs IR diagnostics of obscured AGN

Koss et al. 2012

Hard X-ray AGN selection:

- Robust & insensitive to dust obscuration
- But only shallow surveys possible

Satyapal et al. 2014

Mid-IR color selection:

- Much larger surveys possible
- But sensitive only to most luminous AGN (& contaminated by galaxies at high z)
- How do mid-IR colors (& completeness) evolve during the merger?
- When are they associated with dual AGN?

Simulations & mock observations of AGN in merging galaxies

Hydrodynamic simulations with GADGET-3*:

*(Springel & Hernquist 2003, Springel 2005)

- 6 major merger simulations
- init. gas fraction: 10 30 %
- init. bulge-to-total ratio: 0 0.2
- SMBHs with accretion & feedback

3-D dust radiative transfer with SUNRISE*:

*(Jonsson 2006, Jonsson+2010)

- Use luminosity-dependent AGN SED template
- 7 viewing angles for each simulation
- Calculate resolved UV-IR spectra of galaxies at each timestep, incl. dust absorption/re-emission

credit: P. Jonsson

Simulating the mid-IR SED of merger-triggered-AGN

Environmental obscuration in late-stage mergers

Major, gas-rich mergers

All mergers (luminous AGN only)

Blecha et al. 2017, in prep

Environmental obscuration in late-stage mergers

Simulating the mid-IR SED of merger-triggered-AGN

Blecha et al. 2017, in prep

Simulating the mid-IR SED of merger-triggered-AGN

- Red mid-IR slope during coalescence in 'normal' gas rich mergers
- Mid-IR AGN signature obscured in extreme, high-z ULIRGs/HyLIRGs
- JWST spectral diagnostics (9.7 µm absorption + PAH strength + mid-IR slope) can constrain f_{AGN}

Definition of merger phases

"Early" (а_{вн} > 10kpc) "Late" (а_{вн} < 10kpc) "Post" (after BH merger)

WISE mid-IR colors vs. AGN luminosity

Blecha et al. 2017, in prep

WISE AGN fraction (W1-W2 > 0.5)

WISE AGN fraction (W1-W2 > 0.5)

W1-W2 > 0.8

WISE AGN fraction (W1-W2 > 0.5)

WISE mid-IR color evolution in mergers

Blecha et al. 2017, in prep

AGN vs. SF contribution to WISE colors

Blecha et al. 2017, in prep

- Peak SFR ~ 400 M_{\odot} yr^1, peak sSFR ~ 10^{-8.5} yr^1
- Little contamination of WISE (W1-W2>0.5) colors, at most 15-20% of late/post-merger phase (at low z)
- Virtually no contamination in less-intense starbursts (or with standard color cuts)
- No contamination with 2-color selection

AGN vs. SF contribution to WISE colors

fractional "contamination" of WISE W1-W2 > 0.5 color by SF

Blecha et al. 2017, in prep

Dual AGN: unique probes of merger-triggered growth

Komossa et al. 2003

Bianchi et al. 2008

Koss et al. 2012

Müller-Sanchez et al. 2015

NRAO/AUI/F.N.Owen etal.

- Virtually all dual AGN in latestage mergers are selected with W1-W2>0.5
- >~ 75% are selected with W1-W2>0.8

- Virtually all dual AGN in latestage mergers are selected with W1-W2>0.5
- >~ 75% are selected with W1-W2>0.8

- >~30-40% of all WISE-selected AGN in mergers should contain duals (with L>~10⁴³-10⁴⁴ erg/s)
- Many are likely still unresolved
- Prime targets for JWST

Blecha et al. 2017, in prep

Satyapal et al. 2014

J0122+0100 J1221+1137 \odot 6 kpc 5 kpc J1306+0735 J1045+3519

10 kpc

6 kpc

Candidate Dual AGN

Single AGN

Satyapal et al. 2017

Ellison et al. 2017

More evidence for elusive dual nuclei (in hard X-ray selected AGN)

Koss, LB et al. 2017

Summary

- Observed merger/AGN connection depends strongly on selection effects: highest luminosity & obscuration in late-stage mergers
- Significant environmental obscuration occurs in mergers, in contrast with AGN unification theories; peaks in the latest merger stages
- Standard mid-IR color selection identifies luminous mergertriggered AGN (L_{AGN}/L_{tot} > 30 - 50%), but most AGN are missed, even in late stage mergers
- Less stringent cut (W1-W2 > 0.5) selects merger-triggered AGN with high completeness and high accuracy (at low z)
- Very effective selection of dual AGN; many are likely still unresolved
- Mid-IR selected AGN (*and* hard X-ray selected AGN) are promising targets for *JWST*; should uncover obscured, sub-kpc dual AGN in mergers

EXTRA SLIDES

Mergers trigger AGN fueling

- AGN activity is enhanced in galaxy pairs
- Strongest enhancement in late-stage mergers
- Dual AGN activity is enhanced even more strongly

Mergers trigger luminous AGN

Mergers trigger obscured, luminous AGN

Higher merger fraction in hosts of AGN selected in ultra-hard X-rays (*Swift*/BAT):

Koss et al. 2010

Mergers trigger obscured, luminous AGN

Koss et al. 2012

Ultra-hard X-ray (Swift-BAT) selected AGN:

- $f_{pair} \sim 10\%$ on < 100 kpc scales
- $f_{pair} \sim 50\%$ for < 15 kpc

Mid-IR color selection of obscured AGN

SDSS pair sample

Galaxy Zoo 'post-merger' sample

÷

Satyapal et al. 2014

Environmental obscuration in late-stage mergers

Active fraction vs merger phase

WISE mid-IR color evolution in mergers

Optical searches for dual AGN: Double-peaked narrow lines

Blecha et al. 2013b

Optical searches for dual AGN: Double-peaked narrow lines

Liu et al. 2009

- SMBH orbital motion on kpc scales?
- ~ 1% of AGN have double-peaked NLs
- Follow-up observations: >10% are confirmed dual AGN or strong candidates

Comerford et al. 2012

McGurk et al. 2011

Follow-up of double-peaked NL AGN

X-ray:

Optical spectroscopic searches for kpc-scale dual AGN

- Double-peaked NLs from dual SMBHs are *generic* to major mergers, but *short lived* (~ few Myr)
- Most double-peaked NLs produced by gas kinematics, not SMBH motion

Müller-Sanchez et al. 2015

- >~30-40% of *all* WISEselected AGN in mergers should contain duals (with L>~10⁴³-10⁴⁴ erg/s)
- Slightly *higher* dual fraction for more stringent mid-IR criterion (W1-W2>0.8)
- Many are likely still unresolved
- Prime targets for *JWST*

Evidence for obscuration in confirmed dual AGN

Satyapal et al. 2017