Properties of active galactic nuclei in dwarf galaxies

Vivienne Baldassare Elusive AGNs 12 June 2017

Joint work with: Amy Reines, Elena Gallo, Jenny Greene

Scaling relations between BH mass and galaxy properties suggest co-evolution

- Tight correlations between black hole mass, large scale galaxy properties
- Growth of galaxy regulates growth of BH (and vice versa)
- Keys to BH formation and growth at the low mass end

Until recently, few dwarf galaxies were known to contain AGNs

(Thornton et al. 2008)

(Credit: Mt. Lemmon SkyCenter)

- Barth et al. 2004: "... only two AGNs in dwarf galaxies have previously been identified"
- POX 52 (Kunth, Sargent, and Bothun 1987) and NGC 4395 (Filippenko and Sargent 1989) were serendipitious discoveries

Large surveys have identified increasing numbers of AGN in dwarf galaxies

- Greene & Ho (2004; 2007): used Sloan Digital Sky Survey (SDSS) to search for broad H-alpha emission lines indicative of black holes with M_{BH} <10⁶ M_{\odot}
 - ...most not in dwarf galaxies (Greene et al. 2008, Jiang et al. 2011)
- Reines et al. 2013, Moran et al. 2014 optical spectroscopic signatures
- Sartori et al. 2015– IR/optical diagnostics (also see Hainline et al. 2016 about IR diagnostics)
- Pardo et al. 2015, Chen et al. 2017 X-ray emission

Now know of ~200 total dwarf galaxies with AGN signatures

Finding AGNs in dwarf galaxies

 Reines et al. 2013: First systematic study of AGN in dwarf galaxies

- Sample: 25,000 nearby (z < 0.055) dwarf galaxies (M_{*}<10^{9.5} M_☉) in the SDSS
- 136 galaxies with narrowline AGN signatures
- 25 galaxies with broad Hα emission

Multi-epoch spectroscopy of dwarf galaxies with AGN signatures

Reines et al. 2013 identified 25 dwarf galaxies with broad H-alpha emission lines

 Type II supernovae also generate broad emission lines with similar widths

Ofek et al. 2013

Multi-epoch spectroscopy of dwarf galaxies with AGN signatures

Goals:

- Galaxies with broad emission line evidence for AGN: determine whether broad emission is persistent/ consistent
 - 16 objects (14 star forming, 1 composite, 1 AGN)
- Galaxies with narrow emission line evidence for AGN: search for faint broad emission, measure stellar velocity dispersions
 - 15 objects (some overlap with broad sample)

Broad Ha sample: for star forming dwarfs, broad Ha likely from stellar processes

- In almost all star forming dwarfs, broad emission faded on timescales of 5-10 years
- Suggests broad emission generated by e.g., Type II supernovae (** for star forming galaxies **)

Broad Ha sample: broad emission persistent in objects with narrow line AGN signatures


```
RGG 119: M_{BH} = 2.9 \times 10^5 M_{\odot}
```

For dwarf galaxies, broad Ha alone is not evidence for an AGN

Narrow-line sample: special case of RGG 118

- RGG 118 is a dwarf, disk galaxy ~100 Mpc away
- Stellar mass of $2.5 \times 10^9 \,\mathrm{M}_{\odot}$
- First identified as narrow-line composite in Reines et al. 2013
- Targeted for higher-res spectroscopy with Magellan Echellete Spectrograph on 6.5m Clay telescope at LCO

Image credit: SDSS/NASA/CXO

Narrow-line evidence for an AGN in RGG 118

- 6 years between SDSS spectroscopy and MagE spectroscopy
- All narrow line diagnostics point to presence of AGN

The mass of the BH in RGG 118

- Single epoch spectroscopic techniques: estimate BH mass using FWHM/luminosity of broad Ha
- Assume broad line region gas is virialized:

 $M_{BH}\sim\Delta V^2\;R\;/\;G$

Baldassare et al. 2015

RGG 118: $M_{BH} \sim 50,000 M_{\odot}$

- Chandra X-ray Observatory DDT observations reveal hard nuclear point source (L_{2-10kev} = 4×10³⁹ erg/s)
- Eddington fraction of 1%

Hubble Space Telescope imaging of RGG 118

- Cycle 23, PI: Baldassare
- 3 orbits with UVIS and IR channels
- Imaging in F475W, F775W, F160W (equivalent of g, i, H)

Analyzing the structure of RGG 118

Baldassare et al. submitted

RGG 118 and scaling relations

 RGG 118 sits below scaling relations between BH mass and "bulge" properties

Low mass end of the M-sigma relation

Baldassare et al. 2016

Characterizing X-ray/UV emission from AGN in dwarf galaxies

- 10 AGN/composite objects with broad emission from Reines et al. (2013)
 - 3 have archival Chandra
 observations
 - NEW Chandra/HST (WFC3 F275W) observations for remaining 7
 - +new observations of one star forming object with broad emission

SDSS images of dwarf galaxies with AGN

100% X-ray detection fraction

1"

CXO 0.3-8 keV

0.024 0.049 0.073 0.098 0.12 0.15 0.17 0.2 0.22 0.068 0.14 0.21 0.27 0.34 0.41 0.48 0.55 0.62

Baldassare et al. 2017

0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6

X-ray luminosities are high and greater than expected from star formation

- 2-10 keV X-ray luminosities range from ~5×10³⁹ to 1×10⁴² erg/s
- BH masses from broad Hα range from 8×10⁴ to 1×10⁶ M_☉
- Eddington fractions range from 0.1-50%
 - Similar to massive broadline AGN at higher z
- Strong confirmation that these galaxies host AGN (even composites!)

X-ray/UV diagostics

- $\alpha_{ox} = -0.383 \log (I_{2500}/I_{2keV})$ (Tananbaum et al. 1979)
- Quantifies relative power output in X-ray/UV
- Important diagnostic for accretion disk structure

Summary

- Multi-epoch spectroscopy of dwarf galaxies with AGN signatures (Baldassare et al. 2015, 2016, submitted)
 - Dwarf galaxies with broad emission lines and narrow line AGN signatures are secure AGN
 - Dwarf galaxies with broad lines and star formation are not
 - RGG 118: typical spiral galaxy with a 50,000 solar mass BH
- X-ray/UV properties (Baldassare et al. 2017)
 - AGNs in dwarf galaxies are accreting at high Eddington fractions
 - May be relatively UV bright compared to more massive AGNs